Expansion and Harvesting of hMSC-TERT
نویسندگان
چکیده
The expansion of human mesenchymal stem cells as suspension culture by means of spinner flasks and microcarriers, compared to the cultivation in tissue culture flasks, offers the advantage of reducing the requirements of large incubator capacities as well as reducing the handling effort during cultivation and harvesting. Nonporous microcarriers are preferable when the cells need to be kept in viable condition for further applications like tissue engineering or cell therapy. In this study, the qualification of Biosilon, Cytodex 1, Cytodex 3, RapidCell and P102-L for expansion of hMSC-TERT with an associated harvesting process using either trypsin, accutase, collagenase or a trypsin-accutase mixture was investigated. A subsequent adipogenic differentiation of harvested hMSC-TERT was performed in order to observe possible negative effects on their (adipogenic) differentiation potential as a result of the cultivation and harvesting method. The cultivated cells showed an average growth rate of 0.52 d(-1). The cells cultivated on Biosilon, RapidCell and P102-L were harvested succesfully achieving high cell yield and vitalities near 100%. This was not the case for cells on Cytodex 1 and Cytodex 3. The trypsin-accutase mix was most effective. After spinner expansion and harvesting the cells were successfully differentiated to adipocytes.
منابع مشابه
Enzymatic Detachment of Therapeutic Mesenchymal Stromal Cells Grown on Glass Carriers in a Bioreactor
Cell therapies require the in vitro expansion of adherent cells such as mesenchymal stromal cells (hMSCs) in bioreactor systems or other culture environments, followed by cell harvest. As hMSCs are strictly adherent cells, cell harvest requires cell detachment. The use of hMSCs for cell therapy requires GMP production in accordance with the guidelines for advanced therapeutic medical products. ...
متن کاملAttachment, Growth, and Detachment of Human Mesenchymal Stem Cells in a Chemically Defined Medium
The manufacture of human mesenchymal stem cells (hMSCs) for clinical applications requires an appropriate growth surface and an optimized, preferably chemically defined medium (CDM) for expansion. We investigated a new protein/peptide-free CDM that supports the adhesion, growth, and detachment of an immortalized hMSC line (hMSC-TERT) as well as primary cells derived from bone marrow (bm-hMSCs) ...
متن کاملConstitutive Expression of Human Telomerase Enhances the Proliferation Potential of Human Mesenchymal Stem Cells
Human mesenchymal stem cells (hMSCs) are highly desirable cells for bone engineering due to the inherent multipotent nature of the cells. Unfortunately, there is a high degree of variability, as primary hMSC cultures quickly undergo replicative senescence with loss of proliferative potential as they are continually propagated in cell culture. We sought to reduce the variability of these cells b...
متن کاملRole of governments in expansion of household rainwater harvesting systems: introduction to experiences of some countries
Role of governments in expansion of household rainwater harvesting systems: introduction to experiences of some countries Vahedberdi Sheikh Associate Prof, Gorgan University of Agricultural Sciences and Natural Resources Received: 2019/09 Accepted: 2020/01 Abstract Sustainable utilization and conservation of natural resources has a key importance in intelligent development. To attain sustain...
متن کاملMolecular characterisation of stromal populations derived from human embryonic stem cells: Similarities to immortalised bone marrow derived stromal stem cells
Human bone marrow-derived stromal (skeletal) stem cells (BM-hMSC) are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC) can provide an unlimited source of clinical grade cells for therapy. We have generated MSC-like cells from hESC (call...
متن کامل